Cargando…
Time-Frequency Distribution Map-Based Convolutional Neural Network (CNN) Model for Underwater Pipeline Leakage Detection Using Acoustic Signals
Detection technology of underwater pipeline leakage plays an important role in the subsea production system. In this paper, a new method based on the acoustic leak signal collected by a hydrophone is proposed to detect pipeline leakage in the subsea production system. Through the pipeline leakage te...
Autores principales: | Xie, Yingchun, Xiao, Yucheng, Liu, Xuyan, Liu, Guijie, Jiang, Weixiong, Qin, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570753/ https://www.ncbi.nlm.nih.gov/pubmed/32899829 http://dx.doi.org/10.3390/s20185040 |
Ejemplares similares
-
Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks
por: Hu, Gang, et al.
Publicado: (2021) -
Deep convolution stack for waveform in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2021) -
Analysis of Propagation and Distribution Characteristics of Leakage Acoustic Waves in Water Supply Pipelines
por: Li, Yunfei, et al.
Publicado: (2021) -
A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2019) -
P_VggNet: A convolutional neural network (CNN) with pixel-based attention map
por: Liu, Kunhua, et al.
Publicado: (2018)