Cargando…
Joint Stochastic Spline and Autoregressive Identification Aiming Order Reduction Based on Noisy Sensor Data
This article introduces the spline approximation concept, in the context of system identification, aiming to obtain useful autoregressive models of reduced order. Models with a small number of poles are extremely useful in real time control applications, since the corresponding regulators are easier...
Autores principales: | Stefanoiu, Dan, Culita, Janetta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570758/ https://www.ncbi.nlm.nih.gov/pubmed/32899822 http://dx.doi.org/10.3390/s20185038 |
Ejemplares similares
-
HYRON—An Installation to Produce High Purity Hydrogen and Soft Iron Powder from Cellulose Waste
por: Stefanoiu, Dan, et al.
Publicado: (2019) -
Estimation of Autoregressive Parameters from Noisy Observations Using Iterated Covariance Updates
por: Moon, Todd K., et al.
Publicado: (2020) -
Stochastic processes for physicists: understanding noisy systems
por: Jacobs, Kurt
Publicado: (2010) -
Measuring Statistical Asymmetries of Stochastic Processes: Study of the Autoregressive Process
por: Yamashita Rios de Sousa, Arthur Matsuo, et al.
Publicado: (2018) -
Planar interpolation by second order spiral splines
por: Noakes, Lyle
Publicado: (2020)