Cargando…
Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydropon...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570851/ https://www.ncbi.nlm.nih.gov/pubmed/32957499 http://dx.doi.org/10.3390/s20185314 |
_version_ | 1783597042469175296 |
---|---|
author | Tuan, Vu Ngoc Khattak, Abdul Mateen Zhu, Hui Gao, Wanlin Wang, Minjuan |
author_facet | Tuan, Vu Ngoc Khattak, Abdul Mateen Zhu, Hui Gao, Wanlin Wang, Minjuan |
author_sort | Tuan, Vu Ngoc |
collection | PubMed |
description | Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydroponic system. To minimize these deficiencies, we combined the multivariate standard addition (MSAM) sampling technique with the deep kernel learning (DKL) model for a six ISEs array to increase the prediction accuracy and precision of eight ions, including [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , and [Formula: see text]. The enhanced data feature based on feature enrichment (FE) of the MSAM technique provided more useful information to DKL for improving the prediction reliability of the available ISE ions and enhanced the detection of unavailable ISE ions (phosphate and magnesium). The results showed that the combined MSAM–feature enrichment (FE)–DKL sensing structure for validating ten real hydroponic samples achieved low root mean square errors (RMSE) of 63.8, 8.3, 29.2, 18.5, 11.8, and 8.8 [Formula: see text] with below 8% coefficients of variation (CVs) for predicting nitrate, ammonium, potassium, calcium, sodium, and chloride, respectively. Moreover, the prediction of phosphate and magnesium in the ranges of 5–275 mg·L(−1) and 10–80 [Formula: see text] had RMSEs of 29.6 and 8.7 [Formula: see text] respectively. The results prove that the proposed approach can be applied successfully to improve the accuracy and feasibility of ISEs in a closed hydroponic system. |
format | Online Article Text |
id | pubmed-7570851 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75708512020-10-28 Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution Tuan, Vu Ngoc Khattak, Abdul Mateen Zhu, Hui Gao, Wanlin Wang, Minjuan Sensors (Basel) Article Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydroponic system. To minimize these deficiencies, we combined the multivariate standard addition (MSAM) sampling technique with the deep kernel learning (DKL) model for a six ISEs array to increase the prediction accuracy and precision of eight ions, including [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , and [Formula: see text]. The enhanced data feature based on feature enrichment (FE) of the MSAM technique provided more useful information to DKL for improving the prediction reliability of the available ISE ions and enhanced the detection of unavailable ISE ions (phosphate and magnesium). The results showed that the combined MSAM–feature enrichment (FE)–DKL sensing structure for validating ten real hydroponic samples achieved low root mean square errors (RMSE) of 63.8, 8.3, 29.2, 18.5, 11.8, and 8.8 [Formula: see text] with below 8% coefficients of variation (CVs) for predicting nitrate, ammonium, potassium, calcium, sodium, and chloride, respectively. Moreover, the prediction of phosphate and magnesium in the ranges of 5–275 mg·L(−1) and 10–80 [Formula: see text] had RMSEs of 29.6 and 8.7 [Formula: see text] respectively. The results prove that the proposed approach can be applied successfully to improve the accuracy and feasibility of ISEs in a closed hydroponic system. MDPI 2020-09-17 /pmc/articles/PMC7570851/ /pubmed/32957499 http://dx.doi.org/10.3390/s20185314 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tuan, Vu Ngoc Khattak, Abdul Mateen Zhu, Hui Gao, Wanlin Wang, Minjuan Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title | Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_full | Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_fullStr | Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_full_unstemmed | Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_short | Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_sort | combination of multivariate standard addition technique and deep kernel learning model for determining multi-ion in hydroponic nutrient solution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570851/ https://www.ncbi.nlm.nih.gov/pubmed/32957499 http://dx.doi.org/10.3390/s20185314 |
work_keys_str_mv | AT tuanvungoc combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT khattakabdulmateen combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT zhuhui combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT gaowanlin combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT wangminjuan combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution |