Cargando…
Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders
Activity recognition has received considerable attention in many research fields, such as industrial and healthcare fields. However, many researches about activity recognition have focused on static activities and dynamic activities in current literature, while, the transitional activities, such as...
Autores principales: | Ni, Qin, Fan, Zhuo, Zhang, Lei, Nugent, Chris D., Cleland, Ian, Zhang, Yuping, Zhou, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570862/ https://www.ncbi.nlm.nih.gov/pubmed/32911780 http://dx.doi.org/10.3390/s20185114 |
Ejemplares similares
-
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020) -
A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM
por: Gao, Xile, et al.
Publicado: (2019) -
Marginalised Stacked Denoising Autoencoders for Robust Representation of Real-Time Multi-View Action Recognition
por: Gu, Feng, et al.
Publicado: (2015) -
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021) -
Recognition of Human Activities Using Continuous Autoencoders with Wearable Sensors
por: Wang, Lukun
Publicado: (2016)