Cargando…
An Insulin Bolus Advisor for Type 1 Diabetes Using Deep Reinforcement Learning
(1) Background: People living with type 1 diabetes (T1D) require self-management to maintain blood glucose (BG) levels in a therapeutic range through the delivery of exogenous insulin. However, due to the various variability, uncertainty and complex glucose dynamics, optimizing the doses of insulin...
Autores principales: | Zhu, Taiyu, Li, Kezhi, Kuang, Lei, Herrero, Pau, Georgiou, Pantelis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570884/ https://www.ncbi.nlm.nih.gov/pubmed/32899979 http://dx.doi.org/10.3390/s20185058 |
Ejemplares similares
-
Enhancing self-management in type 1 diabetes with wearables and deep learning
por: Zhu, Taiyu, et al.
Publicado: (2022) -
Dilated Recurrent Neural Networks for Glucose Forecasting in Type 1 Diabetes
por: Zhu, Taiyu, et al.
Publicado: (2020) -
Efficacy of bolus insulin calculation by a mobile-based bolus advisor: An open label clinical trial
por: Siavash, Mansour, et al.
Publicado: (2015) -
Automated bolus advisor control and usability study (ABACUS): does use of an insulin bolus advisor improve glycaemic control in patients failing multiple daily insulin injection (MDI) therapy? [NCT01460446]
por: Cavan, David A, et al.
Publicado: (2012) -
A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems
por: Daniels, John, et al.
Publicado: (2022)