Cargando…
DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
Unmanned Aerial Vehicles (UAVs) have been very effective in collecting aerial images data for various Internet-of-Things (IoT)/smart cities applications such as search and rescue, surveillance, vehicle detection, counting, intelligent transportation systems, to name a few. However, the real-time pro...
Autores principales: | Koubaa, Anis, Ammar, Adel, Alahdab, Mahmoud, Kanhouch, Anas, Azar, Ahmad Taher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570899/ https://www.ncbi.nlm.nih.gov/pubmed/32937865 http://dx.doi.org/10.3390/s20185240 |
Ejemplares similares
-
Deep Learning-Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks
por: Yang, Shicheng, et al.
Publicado: (2022) -
Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
por: Hu, Xi, et al.
Publicado: (2022) -
Research on Cloud-Edge-End Collaborative Computing Offloading Strategy in the Internet of Vehicles Based on the M-TSA Algorithm
por: Xu, Qiliang, et al.
Publicado: (2023) -
ESCOVE: Energy-SLA-Aware Edge–Cloud Computation Offloading in Vehicular Networks
por: Ismail, Leila, et al.
Publicado: (2021) -
Energy-Efficient Collaborative Task Computation Offloading in Cloud-Assisted Edge Computing for IoT Sensors
por: Liu, Fagui, et al.
Publicado: (2019)