Cargando…
Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials
The computer-vision-based surface defect detection of metal planar materials is a research hotspot in the field of metallurgical industry. The high standard of planar surface quality in the metal manufacturing industry requires that the performance of an automated visual inspection system and its al...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570919/ https://www.ncbi.nlm.nih.gov/pubmed/32916943 http://dx.doi.org/10.3390/s20185136 |
_version_ | 1783597058328887296 |
---|---|
author | Fang, Xiaoxin Luo, Qiwu Zhou, Bingxing Li, Congcong Tian, Lu |
author_facet | Fang, Xiaoxin Luo, Qiwu Zhou, Bingxing Li, Congcong Tian, Lu |
author_sort | Fang, Xiaoxin |
collection | PubMed |
description | The computer-vision-based surface defect detection of metal planar materials is a research hotspot in the field of metallurgical industry. The high standard of planar surface quality in the metal manufacturing industry requires that the performance of an automated visual inspection system and its algorithms are constantly improved. This paper attempts to present a comprehensive survey on both two-dimensional and three-dimensional surface defect detection technologies based on reviewing over 160 publications for some typical metal planar material products of steel, aluminum, copper plates and strips. According to the algorithm properties as well as the image features, the existing two-dimensional methodologies are categorized into four groups: statistical, spectral, model, and machine learning-based methods. On the basis of three-dimensional data acquisition, the three-dimensional technologies are divided into stereoscopic vision, photometric stereo, laser scanner, and structured light measurement methods. These classical algorithms and emerging methods are introduced, analyzed, and compared in this review. Finally, the remaining challenges and future research trends of visual defect detection are discussed and forecasted at an abstract level. |
format | Online Article Text |
id | pubmed-7570919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75709192020-10-28 Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials Fang, Xiaoxin Luo, Qiwu Zhou, Bingxing Li, Congcong Tian, Lu Sensors (Basel) Review The computer-vision-based surface defect detection of metal planar materials is a research hotspot in the field of metallurgical industry. The high standard of planar surface quality in the metal manufacturing industry requires that the performance of an automated visual inspection system and its algorithms are constantly improved. This paper attempts to present a comprehensive survey on both two-dimensional and three-dimensional surface defect detection technologies based on reviewing over 160 publications for some typical metal planar material products of steel, aluminum, copper plates and strips. According to the algorithm properties as well as the image features, the existing two-dimensional methodologies are categorized into four groups: statistical, spectral, model, and machine learning-based methods. On the basis of three-dimensional data acquisition, the three-dimensional technologies are divided into stereoscopic vision, photometric stereo, laser scanner, and structured light measurement methods. These classical algorithms and emerging methods are introduced, analyzed, and compared in this review. Finally, the remaining challenges and future research trends of visual defect detection are discussed and forecasted at an abstract level. MDPI 2020-09-09 /pmc/articles/PMC7570919/ /pubmed/32916943 http://dx.doi.org/10.3390/s20185136 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Fang, Xiaoxin Luo, Qiwu Zhou, Bingxing Li, Congcong Tian, Lu Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials |
title | Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials |
title_full | Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials |
title_fullStr | Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials |
title_full_unstemmed | Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials |
title_short | Research Progress of Automated Visual Surface Defect Detection for Industrial Metal Planar Materials |
title_sort | research progress of automated visual surface defect detection for industrial metal planar materials |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570919/ https://www.ncbi.nlm.nih.gov/pubmed/32916943 http://dx.doi.org/10.3390/s20185136 |
work_keys_str_mv | AT fangxiaoxin researchprogressofautomatedvisualsurfacedefectdetectionforindustrialmetalplanarmaterials AT luoqiwu researchprogressofautomatedvisualsurfacedefectdetectionforindustrialmetalplanarmaterials AT zhoubingxing researchprogressofautomatedvisualsurfacedefectdetectionforindustrialmetalplanarmaterials AT licongcong researchprogressofautomatedvisualsurfacedefectdetectionforindustrialmetalplanarmaterials AT tianlu researchprogressofautomatedvisualsurfacedefectdetectionforindustrialmetalplanarmaterials |