Cargando…
Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion
Understanding social interactions in livestock groups could improve management practices, but this can be difficult and time-consuming using traditional methods of live observations and video recordings. Sensor technologies and machine learning techniques could provide insight not previously possibl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570944/ https://www.ncbi.nlm.nih.gov/pubmed/32961892 http://dx.doi.org/10.3390/s20185340 |
_version_ | 1783597064131706880 |
---|---|
author | Xu, Haocheng Li, Shenghong Lee, Caroline Ni, Wei Abbott, David Johnson, Mark Lea, Jim M. Yuan, Jinhong Campbell, Dana L. M. |
author_facet | Xu, Haocheng Li, Shenghong Lee, Caroline Ni, Wei Abbott, David Johnson, Mark Lea, Jim M. Yuan, Jinhong Campbell, Dana L. M. |
author_sort | Xu, Haocheng |
collection | PubMed |
description | Understanding social interactions in livestock groups could improve management practices, but this can be difficult and time-consuming using traditional methods of live observations and video recordings. Sensor technologies and machine learning techniques could provide insight not previously possible. In this study, based on the animals’ location information acquired by a new cooperative wireless localisation system, unsupervised machine learning approaches were performed to identify the social structure of a small group of cattle yearlings ([Formula: see text]) and the social behaviour of an individual. The paper first defined the affinity between an animal pair based on the ranks of their distance. Unsupervised clustering algorithms were then performed, including K-means clustering and agglomerative hierarchical clustering. In particular, K-means clustering was applied based on logical and physical distance. By comparing the clustering result based on logical distance and physical distance, the leader animals and the influence of an individual in a herd of cattle were identified, which provides valuable information for studying the behaviour of animal herds. Improvements in device robustness and replication of this work would confirm the practical application of this technology and analysis methodologies. |
format | Online Article Text |
id | pubmed-7570944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75709442020-10-28 Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion Xu, Haocheng Li, Shenghong Lee, Caroline Ni, Wei Abbott, David Johnson, Mark Lea, Jim M. Yuan, Jinhong Campbell, Dana L. M. Sensors (Basel) Article Understanding social interactions in livestock groups could improve management practices, but this can be difficult and time-consuming using traditional methods of live observations and video recordings. Sensor technologies and machine learning techniques could provide insight not previously possible. In this study, based on the animals’ location information acquired by a new cooperative wireless localisation system, unsupervised machine learning approaches were performed to identify the social structure of a small group of cattle yearlings ([Formula: see text]) and the social behaviour of an individual. The paper first defined the affinity between an animal pair based on the ranks of their distance. Unsupervised clustering algorithms were then performed, including K-means clustering and agglomerative hierarchical clustering. In particular, K-means clustering was applied based on logical and physical distance. By comparing the clustering result based on logical distance and physical distance, the leader animals and the influence of an individual in a herd of cattle were identified, which provides valuable information for studying the behaviour of animal herds. Improvements in device robustness and replication of this work would confirm the practical application of this technology and analysis methodologies. MDPI 2020-09-18 /pmc/articles/PMC7570944/ /pubmed/32961892 http://dx.doi.org/10.3390/s20185340 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Haocheng Li, Shenghong Lee, Caroline Ni, Wei Abbott, David Johnson, Mark Lea, Jim M. Yuan, Jinhong Campbell, Dana L. M. Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion |
title | Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion |
title_full | Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion |
title_fullStr | Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion |
title_full_unstemmed | Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion |
title_short | Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion |
title_sort | analysis of cattle social transitional behaviour: attraction and repulsion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570944/ https://www.ncbi.nlm.nih.gov/pubmed/32961892 http://dx.doi.org/10.3390/s20185340 |
work_keys_str_mv | AT xuhaocheng analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT lishenghong analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT leecaroline analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT niwei analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT abbottdavid analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT johnsonmark analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT leajimm analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT yuanjinhong analysisofcattlesocialtransitionalbehaviourattractionandrepulsion AT campbelldanalm analysisofcattlesocialtransitionalbehaviourattractionandrepulsion |