Cargando…
Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data
This study focuses on driver-behavior identification and its application to finding embedded solutions in a connected car environment. We present a lightweight, end-to-end deep-learning framework for performing driver-behavior identification using in-vehicle controller area network (CAN-BUS) sensor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570946/ https://www.ncbi.nlm.nih.gov/pubmed/32899751 http://dx.doi.org/10.3390/s20185030 |
_version_ | 1783597064590983168 |
---|---|
author | Ullah, Shan Kim, Deok-Hwan |
author_facet | Ullah, Shan Kim, Deok-Hwan |
author_sort | Ullah, Shan |
collection | PubMed |
description | This study focuses on driver-behavior identification and its application to finding embedded solutions in a connected car environment. We present a lightweight, end-to-end deep-learning framework for performing driver-behavior identification using in-vehicle controller area network (CAN-BUS) sensor data. The proposed method outperforms the state-of-the-art driver-behavior profiling models. Particularly, it exhibits significantly reduced computations (i.e., reduced numbers both of floating-point operations and parameters), more efficient memory usage (compact model size), and less inference time. The proposed architecture features depth-wise convolution, along with augmented recurrent neural networks (long short-term memory or gated recurrent unit), for time-series classification. The minimum time-step length (window size) required in the proposed method is significantly lower than that required by recent algorithms. We compared our results with compressed versions of existing models by applying efficient channel pruning on several layers of current models. Furthermore, our network can adapt to new classes using sparse-learning techniques, that is, by freezing relatively strong nodes at the fully connected layer for the existing classes and improving the weaker nodes by retraining them using data regarding the new classes. We successfully deploy the proposed method in a container environment using NVIDIA Docker in an embedded system (Xavier, TX2, and Nano) and comprehensively evaluate it with regard to numerous performance metrics. |
format | Online Article Text |
id | pubmed-7570946 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75709462020-10-28 Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data Ullah, Shan Kim, Deok-Hwan Sensors (Basel) Article This study focuses on driver-behavior identification and its application to finding embedded solutions in a connected car environment. We present a lightweight, end-to-end deep-learning framework for performing driver-behavior identification using in-vehicle controller area network (CAN-BUS) sensor data. The proposed method outperforms the state-of-the-art driver-behavior profiling models. Particularly, it exhibits significantly reduced computations (i.e., reduced numbers both of floating-point operations and parameters), more efficient memory usage (compact model size), and less inference time. The proposed architecture features depth-wise convolution, along with augmented recurrent neural networks (long short-term memory or gated recurrent unit), for time-series classification. The minimum time-step length (window size) required in the proposed method is significantly lower than that required by recent algorithms. We compared our results with compressed versions of existing models by applying efficient channel pruning on several layers of current models. Furthermore, our network can adapt to new classes using sparse-learning techniques, that is, by freezing relatively strong nodes at the fully connected layer for the existing classes and improving the weaker nodes by retraining them using data regarding the new classes. We successfully deploy the proposed method in a container environment using NVIDIA Docker in an embedded system (Xavier, TX2, and Nano) and comprehensively evaluate it with regard to numerous performance metrics. MDPI 2020-09-04 /pmc/articles/PMC7570946/ /pubmed/32899751 http://dx.doi.org/10.3390/s20185030 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ullah, Shan Kim, Deok-Hwan Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data |
title | Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data |
title_full | Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data |
title_fullStr | Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data |
title_full_unstemmed | Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data |
title_short | Lightweight Driver Behavior Identification Model with Sparse Learning on In-Vehicle CAN-BUS Sensor Data |
title_sort | lightweight driver behavior identification model with sparse learning on in-vehicle can-bus sensor data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570946/ https://www.ncbi.nlm.nih.gov/pubmed/32899751 http://dx.doi.org/10.3390/s20185030 |
work_keys_str_mv | AT ullahshan lightweightdriverbehavioridentificationmodelwithsparselearningoninvehiclecanbussensordata AT kimdeokhwan lightweightdriverbehavioridentificationmodelwithsparselearningoninvehiclecanbussensordata |