Cargando…
Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter
The existence of clutter, unknown measurement sources, unknown number of targets, and undetected probability are problems for multi-extended target tracking, to address these problems; this paper proposes a gamma-Gaussian-inverse Wishart (GGIW) implementation of a marginal distribution Poisson multi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570961/ https://www.ncbi.nlm.nih.gov/pubmed/32962273 http://dx.doi.org/10.3390/s20185387 |
_version_ | 1783597067154751488 |
---|---|
author | Du, Haocui Xie, Weixin |
author_facet | Du, Haocui Xie, Weixin |
author_sort | Du, Haocui |
collection | PubMed |
description | The existence of clutter, unknown measurement sources, unknown number of targets, and undetected probability are problems for multi-extended target tracking, to address these problems; this paper proposes a gamma-Gaussian-inverse Wishart (GGIW) implementation of a marginal distribution Poisson multi-Bernoulli mixture (MD-PMBM) filter. Unlike existing multiple extended target tracking filters, the GGIW-MD-PMBM filter computes the marginal distribution (MD) and the existence probability of each target, which can shorten the computing time while maintaining good tracking results. The simulation results confirm the validity and reliability of the GGIW-MD-PMBM filter. |
format | Online Article Text |
id | pubmed-7570961 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75709612020-10-28 Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter Du, Haocui Xie, Weixin Sensors (Basel) Article The existence of clutter, unknown measurement sources, unknown number of targets, and undetected probability are problems for multi-extended target tracking, to address these problems; this paper proposes a gamma-Gaussian-inverse Wishart (GGIW) implementation of a marginal distribution Poisson multi-Bernoulli mixture (MD-PMBM) filter. Unlike existing multiple extended target tracking filters, the GGIW-MD-PMBM filter computes the marginal distribution (MD) and the existence probability of each target, which can shorten the computing time while maintaining good tracking results. The simulation results confirm the validity and reliability of the GGIW-MD-PMBM filter. MDPI 2020-09-20 /pmc/articles/PMC7570961/ /pubmed/32962273 http://dx.doi.org/10.3390/s20185387 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Du, Haocui Xie, Weixin Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter |
title | Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter |
title_full | Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter |
title_fullStr | Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter |
title_full_unstemmed | Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter |
title_short | Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter |
title_sort | extended target marginal distribution poisson multi-bernoulli mixture filter |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570961/ https://www.ncbi.nlm.nih.gov/pubmed/32962273 http://dx.doi.org/10.3390/s20185387 |
work_keys_str_mv | AT duhaocui extendedtargetmarginaldistributionpoissonmultibernoullimixturefilter AT xieweixin extendedtargetmarginaldistributionpoissonmultibernoullimixturefilter |