Cargando…
A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network
Ship trajectory prediction is a key requisite for maritime navigation early warning and safety, but accuracy and computation efficiency are major issues still to be resolved. The research presented in this paper introduces a deep learning framework and a Gate Recurrent Unit (GRU) model to predict ve...
Autores principales: | Suo, Yongfeng, Chen, Wenke, Claramunt, Christophe, Yang, Shenhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570964/ https://www.ncbi.nlm.nih.gov/pubmed/32916845 http://dx.doi.org/10.3390/s20185133 |
Ejemplares similares
-
A Dynamic Risk Appraisal Model and Its Application in VTS Based on a Cellular Automata Simulation Prediction
por: Suo, Yongfeng, et al.
Publicado: (2021) -
A Formal and Visual Data-Mining Model for Complex Ship Behaviors and Patterns
por: Suo, Yongfeng, et al.
Publicado: (2022) -
A Spatio-Temporal Entropy-based Framework for the Detection of Trajectories Similarity
por: Hosseinpoor Milaghardan, Amin, et al.
Publicado: (2018) -
Extracting Global Shipping Networks from Massive Historical Automatic Identification System Sensor Data: A Bottom-Up Approach
por: Wang, Zhihuan, et al.
Publicado: (2019) -
Coding with transient trajectories in recurrent neural networks
por: Bondanelli, Giulio, et al.
Publicado: (2020)