Cargando…
A Robust Dynamic Classifier Selection Approach for Hyperspectral Images with Imprecise Label Information
Supervised hyperspectral image (HSI) classification relies on accurate label information. However, it is not always possible to collect perfectly accurate labels for training samples. This motivates the development of classifiers that are sufficiently robust to some reasonable amounts of errors in d...
Autores principales: | Li, Meizhu, Huang, Shaoguang, De Bock, Jasper, de Cooman, Gert, Pižurica, Aleksandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570993/ https://www.ncbi.nlm.nih.gov/pubmed/32942592 http://dx.doi.org/10.3390/s20185262 |
Ejemplares similares
-
A Robust Sparse Representation Model for Hyperspectral Image Classification †
por: Huang, Shaoguang, et al.
Publicado: (2017) -
Introduction to imprecise probabilities
por: Augustin, Thomas, et al.
Publicado: (2014) -
Upgrading the Fusion of Imprecise Classifiers
por: Moral-García, Serafín, et al.
Publicado: (2023) -
Archimedean Choice Functions: An Axiomatic Foundation for Imprecise Decision Making
por: De Bock, Jasper
Publicado: (2020) -
Limit Behaviour of Upper and Lower Expected Time Averages in Discrete-Time Imprecise Markov Chains
por: T’Joens, Natan, et al.
Publicado: (2020)