Cargando…
Enhancing Mouth-Based Emotion Recognition Using Transfer Learning
This work concludes the first study on mouth-based emotion recognition while adopting a transfer learning approach. Transfer learning results are paramount for mouth-based emotion emotion recognition, because few datasets are available, and most of them include emotional expressions simulated by act...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571064/ https://www.ncbi.nlm.nih.gov/pubmed/32933178 http://dx.doi.org/10.3390/s20185222 |
_version_ | 1783597090208743424 |
---|---|
author | Franzoni, Valentina Biondi, Giulio Perri, Damiano Gervasi, Osvaldo |
author_facet | Franzoni, Valentina Biondi, Giulio Perri, Damiano Gervasi, Osvaldo |
author_sort | Franzoni, Valentina |
collection | PubMed |
description | This work concludes the first study on mouth-based emotion recognition while adopting a transfer learning approach. Transfer learning results are paramount for mouth-based emotion emotion recognition, because few datasets are available, and most of them include emotional expressions simulated by actors, instead of adopting real-world categorisation. Using transfer learning, we can use fewer training data than training a whole network from scratch, and thus more efficiently fine-tune the network with emotional data and improve the convolutional neural network’s performance accuracy in the desired domain. The proposed approach aims at improving emotion recognition dynamically, taking into account not only new scenarios but also modified situations to the initial training phase, because the image of the mouth can be available even when the whole face is visible only in an unfavourable perspective. Typical applications include automated supervision of bedridden critical patients in a healthcare management environment, and portable applications supporting disabled users having difficulties in seeing or recognising facial emotions. This achievement takes advantage of previous preliminary works on mouth-based emotion recognition using deep-learning, and has the further benefit of having been tested and compared to a set of other networks using an extensive dataset for face-based emotion recognition, well known in the literature. The accuracy of mouth-based emotion recognition was also compared to the corresponding full-face emotion recognition; we found that the loss in accuracy is mostly compensated by consistent performance in the visual emotion recognition domain. We can, therefore, state that our method proves the importance of mouth detection in the complex process of emotion recognition. |
format | Online Article Text |
id | pubmed-7571064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75710642020-10-28 Enhancing Mouth-Based Emotion Recognition Using Transfer Learning Franzoni, Valentina Biondi, Giulio Perri, Damiano Gervasi, Osvaldo Sensors (Basel) Article This work concludes the first study on mouth-based emotion recognition while adopting a transfer learning approach. Transfer learning results are paramount for mouth-based emotion emotion recognition, because few datasets are available, and most of them include emotional expressions simulated by actors, instead of adopting real-world categorisation. Using transfer learning, we can use fewer training data than training a whole network from scratch, and thus more efficiently fine-tune the network with emotional data and improve the convolutional neural network’s performance accuracy in the desired domain. The proposed approach aims at improving emotion recognition dynamically, taking into account not only new scenarios but also modified situations to the initial training phase, because the image of the mouth can be available even when the whole face is visible only in an unfavourable perspective. Typical applications include automated supervision of bedridden critical patients in a healthcare management environment, and portable applications supporting disabled users having difficulties in seeing or recognising facial emotions. This achievement takes advantage of previous preliminary works on mouth-based emotion recognition using deep-learning, and has the further benefit of having been tested and compared to a set of other networks using an extensive dataset for face-based emotion recognition, well known in the literature. The accuracy of mouth-based emotion recognition was also compared to the corresponding full-face emotion recognition; we found that the loss in accuracy is mostly compensated by consistent performance in the visual emotion recognition domain. We can, therefore, state that our method proves the importance of mouth detection in the complex process of emotion recognition. MDPI 2020-09-13 /pmc/articles/PMC7571064/ /pubmed/32933178 http://dx.doi.org/10.3390/s20185222 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Franzoni, Valentina Biondi, Giulio Perri, Damiano Gervasi, Osvaldo Enhancing Mouth-Based Emotion Recognition Using Transfer Learning |
title | Enhancing Mouth-Based Emotion Recognition Using Transfer Learning |
title_full | Enhancing Mouth-Based Emotion Recognition Using Transfer Learning |
title_fullStr | Enhancing Mouth-Based Emotion Recognition Using Transfer Learning |
title_full_unstemmed | Enhancing Mouth-Based Emotion Recognition Using Transfer Learning |
title_short | Enhancing Mouth-Based Emotion Recognition Using Transfer Learning |
title_sort | enhancing mouth-based emotion recognition using transfer learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571064/ https://www.ncbi.nlm.nih.gov/pubmed/32933178 http://dx.doi.org/10.3390/s20185222 |
work_keys_str_mv | AT franzonivalentina enhancingmouthbasedemotionrecognitionusingtransferlearning AT biondigiulio enhancingmouthbasedemotionrecognitionusingtransferlearning AT perridamiano enhancingmouthbasedemotionrecognitionusingtransferlearning AT gervasiosvaldo enhancingmouthbasedemotionrecognitionusingtransferlearning |