Cargando…

Synthesis, Anti-proliferative Activity, and Molecular Docking Study of New Series of 1,3-5-Triazine Schiff Base Derivatives

Based on the use of s-triazine as a scaffold, we report here a new series of s-triazine Schiff base derivatives and their anti-proliferative activity against two cancer cell lines: human breast carcinoma (MCF-7), and colon cancer (HCT-116) compared with tamoxifen as a reference compound. Several der...

Descripción completa

Detalles Bibliográficos
Autores principales: Al Rasheed, Hessa H., Malebari, Azizah M., Dahlous, Kholood A., Fayne, Darren, El-Faham, Ayman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571070/
https://www.ncbi.nlm.nih.gov/pubmed/32899566
http://dx.doi.org/10.3390/molecules25184065
Descripción
Sumario:Based on the use of s-triazine as a scaffold, we report here a new series of s-triazine Schiff base derivatives and their anti-proliferative activity against two cancer cell lines: human breast carcinoma (MCF-7), and colon cancer (HCT-116) compared with tamoxifen as a reference compound. Several derivatives exhibited growth inhibition activity in the sub-micromolar range. The results reveal that the s-triazine Schiff base derivatives showed varied activities and that the substituents on the s-triazine core have a great effect on the anti-proliferative activity. Compounds with a piperidino and benzylamino substituent on the s-triazine moiety 4b and 4c were most effective in both cell lines compared to the reference compound used. In addition, compound 4b has a para chlorine atom on the benzylidine residue, demonstrating the most potent activity with IC(50) values of 3.29 and 3.64 µM in MCF-7 and HCT-116, respectively. These results indicate that in general, the nature of the substituents on the triazine core and the type of substituent on the benzilyldene ring significantly influenced the anti-proliferative activity. The results obtained from the anti-proliferative activity and the molecular docking study indicate that s-triazine-hydrazone derivatives may be an excellent scaffold for the development of new anti-cancer agents.