Cargando…
Fabric Defect Detection Based on Illumination Correction and Visual Salient Features
Aiming at the influence of uneven illumination on fabric feature extraction and the limitations of traditional frequency-based visual saliency algorithms, we propose a fabric defect detection method based on the combination of illumination correction and visual salient features—(1) Construct a multi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571081/ https://www.ncbi.nlm.nih.gov/pubmed/32916963 http://dx.doi.org/10.3390/s20185147 |
Sumario: | Aiming at the influence of uneven illumination on fabric feature extraction and the limitations of traditional frequency-based visual saliency algorithms, we propose a fabric defect detection method based on the combination of illumination correction and visual salient features—(1) Construct a multi-scale side window box (MS-BOX) filter to extract the illumination component of the image, then use the constructed two-dimensional gamma correction function to perform illumination correction on the image in the global angle, and finally enhance the local contrast of the image in the local angle; (2) Use the [Formula: see text] gradient minimization method to remove the background texture of fabric images and highlight the defects; (3) Represent the fabric image as a quaternion image, where each pixel in the image is represented by a quaternion consisting of color, intensity and edge characteristics. The two-dimensional fractional Fourier transform (2D-FRFT) is used to obtain the saliency map of the quaternion image. Experiments show that our method has a higher overall recall rate for defect detection of star-patterned, box-patterned, and dot-patterned fabrics, and the overall recall-precision effect is better than other existing methods. |
---|