Cargando…
ASAMS: An Adaptive Sequential Sampling and Automatic Model Selection for Artificial Intelligence Surrogate Modeling
Surrogate Modeling (SM) is often used to reduce the computational burden of time-consuming system simulations. However, continuous advances in Artificial Intelligence (AI) and the spread of embedded sensors have led to the creation of Digital Twins (DT), Design Mining (DM), and Soft Sensors (SS). Th...
Autores principales: | Duchanoy, Carlos A., Calvo, Hiram, Moreno-Armendáriz, Marco A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571090/ https://www.ncbi.nlm.nih.gov/pubmed/32957671 http://dx.doi.org/10.3390/s20185332 |
Ejemplares similares
-
Deep-Learning-Based Adaptive Advertising with Augmented Reality
por: Moreno-Armendáriz, Marco A., et al.
Publicado: (2021) -
An Argument for Change in Tobacco Treatment Options Guided by the ASAM Criteria for Patient Placement
por: Williams, Jill M., et al.
Publicado: (2016) -
Wind Booster Optimization for On-Site Energy Generation Using Vertical-Axis Wind Turbines
por: Moreno-Armendáriz, Marco A., et al.
Publicado: (2021) -
A Deep Neural Network Based Model for a Kind of Magnetorheological Dampers
por: Duchanoy, Carlos A., et al.
Publicado: (2019) -
Deep Green Diagnostics: Urban Green Space Analysis Using Deep Learning and Drone Images
por: Moreno-Armendáriz, Marco A., et al.
Publicado: (2019)