Cargando…
British Sign Language Recognition via Late Fusion of Computer Vision and Leap Motion with Transfer Learning to American Sign Language
In this work, we show that a late fusion approach to multimodality in sign language recognition improves the overall ability of the model in comparison to the singular approaches of image classification (88.14%) and Leap Motion data classification (72.73%). With a large synchronous dataset of 18 BSL...
Autores principales: | Bird, Jordan J., Ekárt, Anikó, Faria, Diego R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571093/ https://www.ncbi.nlm.nih.gov/pubmed/32917024 http://dx.doi.org/10.3390/s20185151 |
Ejemplares similares
-
American Sign Language Recognition Using Leap Motion Controller with Machine Learning Approach
por: Chong, Teak-Wei, et al.
Publicado: (2018) -
Iconicity in Signed and Spoken Vocabulary: A Comparison Between American Sign Language, British Sign Language, English, and Spanish
por: Perlman, Marcus, et al.
Publicado: (2018) -
Lexical Variation and Change in British Sign Language
por: Stamp, Rose, et al.
Publicado: (2014) -
Identifying the Correlations Between the Semantics and the Phonology of American Sign Language and British Sign Language: A Vector Space Approach
por: Martinez del Rio, Aurora, et al.
Publicado: (2022) -
Language aptitude in the visuospatial modality: L2 British Sign Language acquisition and cognitive skills in British Sign Language-English interpreting students
por: Watkins, Freya, et al.
Publicado: (2022)