Cargando…
A Graph Convolutional Network-Based Deep Reinforcement Learning Approach for Resource Allocation in a Cognitive Radio Network
Cognitive radio (CR) is a critical technique to solve the conflict between the explosive growth of traffic and severe spectrum scarcity. Reasonable radio resource allocation with CR can effectively achieve spectrum sharing and co-channel interference (CCI) mitigation. In this paper, we propose a joi...
Autores principales: | Zhao, Di, Qin, Hao, Song, Bin, Han, Beichen, Du, Xiaojiang, Guizani, Mohsen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571098/ https://www.ncbi.nlm.nih.gov/pubmed/32933114 http://dx.doi.org/10.3390/s20185216 |
Ejemplares similares
-
Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning
por: Zhang, Yue, et al.
Publicado: (2016) -
Spectrum-Efficient Resource Allocation in Multi-Radio Multi-Hop Cognitive Radio Networks
por: Han, Bin, et al.
Publicado: (2019) -
Cooperative spectrum sensing and resource allocation strategies in cognitive radio networks
por: Fernando, Xavier, et al.
Publicado: (2018) -
Resource Allocation in Cognitive Radio Wireless Sensor Networks with Energy Harvesting
por: Xu, Haitao, et al.
Publicado: (2019) -
A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks
por: Du, Yihang, et al.
Publicado: (2018)