Cargando…
A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications
This paper proposes a deep-learning model with task-specific bounding box regressors (TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for advanced driver assistance system (ADAS) applications. The proposed model separates the object detection networks for objec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571112/ https://www.ncbi.nlm.nih.gov/pubmed/32942628 http://dx.doi.org/10.3390/s20185269 |
_version_ | 1783597101496664064 |
---|---|
author | Lin, Guan-Ting Malligere Shivanna, Vinay Guo, Jiun-In |
author_facet | Lin, Guan-Ting Malligere Shivanna, Vinay Guo, Jiun-In |
author_sort | Lin, Guan-Ting |
collection | PubMed |
description | This paper proposes a deep-learning model with task-specific bounding box regressors (TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for advanced driver assistance system (ADAS) applications. The proposed model separates the object detection networks for objects of different sizes and applies the proposed algorithm to achieve better detection results for both larger and tinier objects. For larger objects, a neural network with a larger visual receptive field is used to acquire information from larger areas. For the detection of tinier objects, the network of a smaller receptive field utilizes fine grain features. A conditional back-propagation mechanism yields different types of TSBBRs to perform data-driven learning for the set criterion and learn the representation of different object sizes without degrading each other. The design of dual-path object bounding box regressors can simultaneously detect objects in various kinds of dissimilar scales and aspect ratios. Only a single inference of neural network is needed for each frame to support the detection of multiple types of object, such as bicycles, motorbikes, cars, buses, trucks, and pedestrians, and to locate their exact positions. The proposed model was developed and implemented on different NVIDIA devices such as 1080 Ti, DRIVE-PX2 and Jetson TX-2 with the respective processing performance of 67 frames per second (fps), 19.4 fps, and 8.9 fps for the video input of 448 × 448 resolution, respectively. The proposed model can detect objects as small as 13 × 13 pixels and achieves 86.54% accuracy on a publicly available Pascal Visual Object Class (VOC) car database and 82.4% mean average precision (mAP) on a large collection of common road real scenes database (iVS database). |
format | Online Article Text |
id | pubmed-7571112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75711122020-10-28 A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications Lin, Guan-Ting Malligere Shivanna, Vinay Guo, Jiun-In Sensors (Basel) Article This paper proposes a deep-learning model with task-specific bounding box regressors (TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for advanced driver assistance system (ADAS) applications. The proposed model separates the object detection networks for objects of different sizes and applies the proposed algorithm to achieve better detection results for both larger and tinier objects. For larger objects, a neural network with a larger visual receptive field is used to acquire information from larger areas. For the detection of tinier objects, the network of a smaller receptive field utilizes fine grain features. A conditional back-propagation mechanism yields different types of TSBBRs to perform data-driven learning for the set criterion and learn the representation of different object sizes without degrading each other. The design of dual-path object bounding box regressors can simultaneously detect objects in various kinds of dissimilar scales and aspect ratios. Only a single inference of neural network is needed for each frame to support the detection of multiple types of object, such as bicycles, motorbikes, cars, buses, trucks, and pedestrians, and to locate their exact positions. The proposed model was developed and implemented on different NVIDIA devices such as 1080 Ti, DRIVE-PX2 and Jetson TX-2 with the respective processing performance of 67 frames per second (fps), 19.4 fps, and 8.9 fps for the video input of 448 × 448 resolution, respectively. The proposed model can detect objects as small as 13 × 13 pixels and achieves 86.54% accuracy on a publicly available Pascal Visual Object Class (VOC) car database and 82.4% mean average precision (mAP) on a large collection of common road real scenes database (iVS database). MDPI 2020-09-15 /pmc/articles/PMC7571112/ /pubmed/32942628 http://dx.doi.org/10.3390/s20185269 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lin, Guan-Ting Malligere Shivanna, Vinay Guo, Jiun-In A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications |
title | A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications |
title_full | A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications |
title_fullStr | A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications |
title_full_unstemmed | A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications |
title_short | A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications |
title_sort | deep-learning model with task-specific bounding box regressors and conditional back-propagation for moving object detection in adas applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571112/ https://www.ncbi.nlm.nih.gov/pubmed/32942628 http://dx.doi.org/10.3390/s20185269 |
work_keys_str_mv | AT linguanting adeeplearningmodelwithtaskspecificboundingboxregressorsandconditionalbackpropagationformovingobjectdetectioninadasapplications AT malligereshivannavinay adeeplearningmodelwithtaskspecificboundingboxregressorsandconditionalbackpropagationformovingobjectdetectioninadasapplications AT guojiunin adeeplearningmodelwithtaskspecificboundingboxregressorsandconditionalbackpropagationformovingobjectdetectioninadasapplications AT linguanting deeplearningmodelwithtaskspecificboundingboxregressorsandconditionalbackpropagationformovingobjectdetectioninadasapplications AT malligereshivannavinay deeplearningmodelwithtaskspecificboundingboxregressorsandconditionalbackpropagationformovingobjectdetectioninadasapplications AT guojiunin deeplearningmodelwithtaskspecificboundingboxregressorsandconditionalbackpropagationformovingobjectdetectioninadasapplications |