Cargando…
A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications
This paper proposes a deep-learning model with task-specific bounding box regressors (TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for advanced driver assistance system (ADAS) applications. The proposed model separates the object detection networks for objec...
Autores principales: | Lin, Guan-Ting, Malligere Shivanna, Vinay, Guo, Jiun-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571112/ https://www.ncbi.nlm.nih.gov/pubmed/32942628 http://dx.doi.org/10.3390/s20185269 |
Ejemplares similares
-
Deep Learning Derived Object Detection and Tracking Technology Based on Sensor Fusion of Millimeter-Wave Radar/Video and Its Application on Embedded Systems
por: Lin, Jia-Jheng, et al.
Publicado: (2023) -
Objects in Ada and its environment
por: Pyle, I C
Publicado: (1987) -
Orthogonalization of Regressors in fMRI Models
por: Mumford, Jeanette A., et al.
Publicado: (2015) -
Heterogeneity of tumorigenicity phenotype in murine tumors. I. Characterization of regressor and progressor clones isolated from a nonmutagenized ultraviolet regressor tumor
por: Schmitt, M, et al.
Publicado: (1981) -
Percentage of progressors in imaging: can we ignore regressors?
por: Sepriano, Alexandre, et al.
Publicado: (2019)