Cargando…
Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM Deep Learning Model
Typhoons are some of the most serious natural disasters, and the key to disaster prevention and mitigation is typhoon level classification. How to better use data of satellite cloud pictures to achieve accurate classification of typhoon levels has become one of classification the hot issues in curre...
Autores principales: | Zhou, Jianyin, Xiang, Jie, Huang, Sixun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571121/ https://www.ncbi.nlm.nih.gov/pubmed/32916835 http://dx.doi.org/10.3390/s20185132 |
Ejemplares similares
-
Domain knowledge integration into deep learning for typhoon intensity classification
por: Higa, Maiki, et al.
Publicado: (2021) -
Classification modeling of intention to donate for victims of Typhoon Odette using deep learning neural network
por: German, Josephine D., et al.
Publicado: (2023) -
Marine Boundary Layer Height Obtained by New Numerical Regularization Method Based on GPS Radio Occultation Data
por: Zhou, Jianyin, et al.
Publicado: (2020) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
Prediction of a typhoon track using a generative adversarial network and satellite images
por: Rüttgers, Mario, et al.
Publicado: (2019)