Cargando…

CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance

The cocrystallization of high-energy explosives has attracted great interests since it can alleviate to a certain extent the power-safety contradiction. 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), one of the most powerful explosives, has attracted much attention for research...

Descripción completa

Detalles Bibliográficos
Autores principales: Pang, Wei-qiang, Wang, Ke, Zhang, Wei, Luca, Luigi T. De, Fan, Xue-zhong, Li, Jun-qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571192/
https://www.ncbi.nlm.nih.gov/pubmed/32962224
http://dx.doi.org/10.3390/molecules25184311
Descripción
Sumario:The cocrystallization of high-energy explosives has attracted great interests since it can alleviate to a certain extent the power-safety contradiction. 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), one of the most powerful explosives, has attracted much attention for researchers worldwide. However, the disadvantage of CL-20 has increased sensitivity to mechanical stimuli and cocrystallization of CL-20 with other compounds may provide a way to decrease its sensitivity. The intermolecular interaction of five types of CL-20-based cocrystal (CL-20/TNT, CL-20/HMX, CL-20/FOX-7, CL-20/TKX-50 and CL-20/DNB) by using molecular dynamic simulation was reviewed. The preparation methods and thermal decomposition properties of CL-20-based cocrystal are emphatically analyzed. Special emphasis is focused on the improved mechanical performances of CL-20-based cocrystal, which are compared with those of CL-20. The existing problems and challenges for the future work on CL-20-based cocrystal are discussed.