Cargando…

Comprehensive Evaluation on Space Information Network Demonstration Platform Based on Tracking and Data Relay Satellite System

Due to the global coverage and real-time access advantages of the Tracking and Data Relay Satellite System (TDRSS), the demonstration platform based on TDRSS can satisfy the new technology verification and demonstration needs of the space information network (evolution from sensorweb). However, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Feng, Shi, Dingyuan, Xiao, Yunlu, Zhang, Tao, Sun, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571206/
https://www.ncbi.nlm.nih.gov/pubmed/32971926
http://dx.doi.org/10.3390/s20185437
Descripción
Sumario:Due to the global coverage and real-time access advantages of the Tracking and Data Relay Satellite System (TDRSS), the demonstration platform based on TDRSS can satisfy the new technology verification and demonstration needs of the space information network (evolution from sensorweb). However, the comprehensive evaluation research of this demonstration platform faces many problems: complicated and diverse technical indicators in various areas, coupling redundancy between indicators, difficulty in establishing the number of indicator system layers, and evaluation errors causing by subjective scoring. Concerning the difficulties, this paper gives a method to construct this special index system, and improves the consistency of evaluation results with Analytic Hierarchy Process in Group Decision-Making (AHP-GDM). A comprehensive evaluation index system including five criterions, 11 elements, more than 30 indicators is constructed according to the three-step strategy of initial set classification, hierarchical optimization, and de-redundancy. For the inconsistent scoring of AHP-GDM, a high-speed convergence consistency improvement strategy is proposed in this paper. Moreover, a method for generating a comprehensive judgment matrix (the aggregation of each judgment matrix) aggregation coefficient is provided. Numerical experiments show that this strategy effectively improves the consistency of the comprehensive judgment matrix. Finally, taking the evaluation of TDRSS development as an example, the versatility and feasibility of the new evaluation strategy are demonstrated.