Cargando…
Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study
Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related...
Autores principales: | Albert, Justin Amadeus, Owolabi, Victor, Gebel, Arnd, Brahms, Clemens Markus, Granacher, Urs, Arnrich, Bert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571213/ https://www.ncbi.nlm.nih.gov/pubmed/32911651 http://dx.doi.org/10.3390/s20185104 |
Ejemplares similares
-
Evaluating the Accuracy of the Azure Kinect and Kinect v2
por: Kurillo, Gregorij, et al.
Publicado: (2022) -
Evaluation of the Azure Kinect and Its Comparison to Kinect V1 and Kinect V2
por: Tölgyessy, Michal, et al.
Publicado: (2021) -
How the Processing Mode Influences Azure Kinect Body Tracking Results
por: Büker, Linda, et al.
Publicado: (2023) -
Filtered pose graph for efficient kinect pose reconstruction
por: Plantard, Pierre, et al.
Publicado: (2016) -
KinectGaitNet: Kinect-Based Gait Recognition Using Deep Convolutional Neural Network
por: Bari, A. S. M. Hossain, et al.
Publicado: (2022)