Cargando…
Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial Imitation Learning
Building a human-like car-following model that can accurately simulate drivers’ car-following behaviors is helpful to the development of driving assistance systems and autonomous driving. Recent studies have shown the advantages of applying reinforcement learning methods in car-following modeling. H...
Autores principales: | Zhou, Yang, Fu, Rui, Wang, Chang, Zhang, Ruibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571238/ https://www.ncbi.nlm.nih.gov/pubmed/32899773 http://dx.doi.org/10.3390/s20185034 |
Ejemplares similares
-
Domain Adaptation for Imitation Learning Using Generative Adversarial Network
por: Nguyen Duc, Tho, et al.
Publicado: (2021) -
Lipschitzness is all you need to tame off-policy generative adversarial imitation learning
por: Blondé, Lionel, et al.
Publicado: (2022) -
Application of conditional generative adversarial network to multi-step car-following modeling
por: Ma, Lijing, et al.
Publicado: (2023) -
Imitating by Generating: Deep Generative Models for Imitation of Interactive Tasks
por: Bütepage, Judith, et al.
Publicado: (2020) -
Style-based quantum generative adversarial networks for Monte Carlo events
por: Bravo-Prieto, Carlos, et al.
Publicado: (2021)