Cargando…
The Bayesian Sampler: Generic Bayesian Inference Causes Incoherence in Human Probability Judgments
Human probability judgments are systematically biased, in apparent tension with Bayesian models of cognition. But perhaps the brain does not represent probabilities explicitly, but approximates probabilistic calculations through a process of sampling, as used in computational probabilistic models in...
Autores principales: | Zhu, Jian-Qiao, Sanborn, Adam N., Chater, Nick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Psychological Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571263/ https://www.ncbi.nlm.nih.gov/pubmed/32191073 http://dx.doi.org/10.1037/rev0000190 |
Ejemplares similares
-
The Bayesian Mutation Sampler Explains Distributions of Causal Judgments
por: Kolvoort, Ivar R., et al.
Publicado: (2023) -
Clarifying the relationship between coherence and accuracy in probability judgments
por: Zhu, Jian-Qiao, et al.
Publicado: (2022) -
Testing Bayesian and heuristic predictions of mass judgments of colliding objects
por: Sanborn, Adam N.
Publicado: (2014) -
Processing Probability Information in Nonnumerical Settings – Teachers’ Bayesian and Non-bayesian Strategies During Diagnostic Judgment
por: Leuders, Timo, et al.
Publicado: (2020) -
Bayesian intravoxel incoherent motion parameter mapping in the human heart
por: Spinner, Georg R., et al.
Publicado: (2017)