Cargando…
Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation
PURPOSE: Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571289/ https://www.ncbi.nlm.nih.gov/pubmed/33064129 http://dx.doi.org/10.1167/iovs.61.12.15 |
_version_ | 1783597142046146560 |
---|---|
author | Tao, Xiaofeng Sabharwal, Jasdeep Wu, Samuel M. Frankfort, Benjamin J. |
author_facet | Tao, Xiaofeng Sabharwal, Jasdeep Wu, Samuel M. Frankfort, Benjamin J. |
author_sort | Tao, Xiaofeng |
collection | PubMed |
description | PURPOSE: Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. METHODS: Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. RESULTS: Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. CONCLUSIONS: These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial. |
format | Online Article Text |
id | pubmed-7571289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-75712892020-10-27 Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation Tao, Xiaofeng Sabharwal, Jasdeep Wu, Samuel M. Frankfort, Benjamin J. Invest Ophthalmol Vis Sci Glaucoma PURPOSE: Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. METHODS: Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. RESULTS: Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. CONCLUSIONS: These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial. The Association for Research in Vision and Ophthalmology 2020-10-16 /pmc/articles/PMC7571289/ /pubmed/33064129 http://dx.doi.org/10.1167/iovs.61.12.15 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. |
spellingShingle | Glaucoma Tao, Xiaofeng Sabharwal, Jasdeep Wu, Samuel M. Frankfort, Benjamin J. Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation |
title | Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation |
title_full | Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation |
title_fullStr | Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation |
title_full_unstemmed | Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation |
title_short | Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation |
title_sort | intraocular pressure elevation compromises retinal ganglion cell light adaptation |
topic | Glaucoma |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571289/ https://www.ncbi.nlm.nih.gov/pubmed/33064129 http://dx.doi.org/10.1167/iovs.61.12.15 |
work_keys_str_mv | AT taoxiaofeng intraocularpressureelevationcompromisesretinalganglioncelllightadaptation AT sabharwaljasdeep intraocularpressureelevationcompromisesretinalganglioncelllightadaptation AT wusamuelm intraocularpressureelevationcompromisesretinalganglioncelllightadaptation AT frankfortbenjaminj intraocularpressureelevationcompromisesretinalganglioncelllightadaptation |