Cargando…
Stronger saccadic suppression of displacement and blanking effect in children
Humans do not notice small displacements to objects that occur during saccades, termed saccadic suppression of displacement (SSD), and this effect is reduced when a blank is introduced between the pre- and postsaccadic stimulus (Bridgeman, Hendry, & Stark, 1975; Deubel, Schneider, & Bridgema...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571331/ https://www.ncbi.nlm.nih.gov/pubmed/33052408 http://dx.doi.org/10.1167/jov.20.10.13 |
Sumario: | Humans do not notice small displacements to objects that occur during saccades, termed saccadic suppression of displacement (SSD), and this effect is reduced when a blank is introduced between the pre- and postsaccadic stimulus (Bridgeman, Hendry, & Stark, 1975; Deubel, Schneider, & Bridgeman, 1996). While these effects have been studied extensively in adults, it is unclear how these phenomena are characterized in children. A potentially related mechanism, saccadic suppression of contrast sensitivity—a prerequisite to achieve a stable percept—is stronger for children (Bruno, Brambati, Perani, & Morrone, 2006). However, the evidence for how transsaccadic stimulus displacements may be suppressed or integrated is mixed. While they can integrate basic visual feature information from an early age, they cannot integrate multisensory information (Gori, Viva, Sandini, & Burr, 2008; Nardini, Jones, Bedford, & Braddick, 2008), suggesting a failure in the ability to integrate more complex sensory information. We tested children 7 to 12 years old and adults 19 to 23 years old on their ability to perceive intrasaccadic stimulus displacements, with and without a postsaccadic blank. Results showed that children had stronger SSD than adults and a larger blanking effect. Children also had larger undershoots and more variability in their initial saccade endpoints, indicating greater intrinsic uncertainty, and they were faster in executing corrective saccades to account for these errors. Together, these results suggest that children may have a greater internal expectation or prediction of saccade error than adults; thus, the stronger SSD in children may be due to higher intrinsic uncertainty in target localization or saccade execution. |
---|