Cargando…
Prediction of Acoustic Fields Using a Lattice-Boltzmann Method and Deep Learning
Using traditional computational fluid dynamics and aeroacoustics methods, the accurate simulation of aeroacoustic sources requires high compute resources to resolve all necessary physical phenomena. In contrast, once trained, artificial neural networks such as deep encoder-decoder convolutional netw...
Autores principales: | Rüttgers, Mario, Koh, Seong-Ryong, Jitsev, Jenia, Schröder, Wolfgang, Lintermann, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571544/ http://dx.doi.org/10.1007/978-3-030-59851-8_6 |
Ejemplares similares
-
A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation
por: Song, Qiaochu, et al.
Publicado: (2022) -
Lattice Boltzmann modeling to explain volcano acoustic source
por: Brogi, Federico, et al.
Publicado: (2018) -
Crystallographic Lattice Boltzmann Method
por: Namburi, Manjusha, et al.
Publicado: (2016) -
Fast rhythm cycles as atomic fragments of cortical processing and learning
por: Jitsev, Jenia
Publicado: (2014) -
The Lattice Boltzmann method: principles and practice
por: Krüger, Timm, et al.
Publicado: (2017)