Cargando…
The inclusion of blastomeres into the inner cell mass in early-stage human embryos depends on the sequence of cell cleavages during the fourth division
The fate of the ICM in humans is still unknown, due to the ethical difficulties surrounding experimentation in this field. In this study we have explored the existing time-lapse recording data of embryos in the early stages of development, taking advantage of the large refractile bodies (RBs) within...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571684/ https://www.ncbi.nlm.nih.gov/pubmed/33075059 http://dx.doi.org/10.1371/journal.pone.0240936 |
Sumario: | The fate of the ICM in humans is still unknown, due to the ethical difficulties surrounding experimentation in this field. In this study we have explored the existing time-lapse recording data of embryos in the early stages of development, taking advantage of the large refractile bodies (RBs) within blastomeres as cellular markers. Our study found that the cellular composition of the ICM in humans is largely determined at the time of the fourth division and blastomeres which cleave first to fourth, during the fourth division from 8 cells to 16 cells, have the potential to be incorporated in the ICM. |
---|