Cargando…
Ensemble learning model for diagnosing COVID-19 from routine blood tests
BACKGROUND AND OBJECTIVES: The pandemic of novel coronavirus disease 2019 (COVID-19) has severely impacted human society with a massive death toll worldwide. There is an urgent need for early and reliable screening of COVID-19 patients to provide better and timely patient care and to combat the spre...
Autores principales: | AlJame, Maryam, Ahmad, Imtiaz, Imtiaz, Ayyub, Mohammed, Ameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572278/ https://www.ncbi.nlm.nih.gov/pubmed/33102686 http://dx.doi.org/10.1016/j.imu.2020.100449 |
Ejemplares similares
-
Deep forest model for diagnosing COVID-19 from routine blood tests
por: AlJame, Maryam, et al.
Publicado: (2021) -
COVID-19 psychosis versus psychosis due to cytotoxic lesion of the corpus callosum (CLOCC): A case report and review
por: Levin, Yuval, et al.
Publicado: (2023) -
Diagnosing brain tumours by routine blood tests using machine learning
por: Podnar, Simon, et al.
Publicado: (2019) -
An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples
por: Abayomi-Alli, Olusola O., et al.
Publicado: (2022) -
Visual Diagnostics of Dental Caries through Deep Learning of Non-Standardised Photographs Using a Hybrid YOLO Ensemble and Transfer Learning Model
por: Tareq, Abu, et al.
Publicado: (2023)