Cargando…
Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder
Decoding how intelligence is engrained in the human brain construct is vital in the understanding of particular neurological disorders. While the majority of existing studies focus on characterizing intelligence in neurotypical (NT) brains, investigating how neural correlates of intelligence scores...
Autores principales: | Dryburgh, Elizabeth, McKenna, Stephen, Rekik, Islem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572331/ https://www.ncbi.nlm.nih.gov/pubmed/31055763 http://dx.doi.org/10.1007/s11682-019-00111-w |
Ejemplares similares
-
Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI
por: Zhao, Feng, et al.
Publicado: (2018) -
Motor speech impairment predicts expressive language in minimally verbal, but not low verbal, individuals with autism spectrum disorder
por: Chenausky, Karen, et al.
Publicado: (2019) -
The Altered Pattern of the Functional Connectome Related to Pathological Biomarkers in Individuals for Autism Spectrum Disorder Identification
por: Peng, Liling, et al.
Publicado: (2022) -
Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder
por: Zhao, Yu, et al.
Publicado: (2016) -
Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis
por: Soussia, Mayssa, et al.
Publicado: (2018)