Cargando…
Multi-Reader–Multi-Split Annotation of Emphysema in Computed Tomography
Emphysema is visible on computed tomography (CT) as low-density lesions representing the destruction of the pulmonary alveoli. To train a machine learning model on the emphysema extent in CT images, labeled image data is needed. The provision of these labels requires trained readers, who are a limit...
Autores principales: | Lidén, Mats, Hjelmgren, Ola, Vikgren, Jenny, Thunberg, Per |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572947/ https://www.ncbi.nlm.nih.gov/pubmed/32779016 http://dx.doi.org/10.1007/s10278-020-00378-2 |
Ejemplares similares
-
Quantitative T2* imaging of iron overload in a non-dedicated center – Normal variation, repeatability and reader variation
por: Lidén, Mats, et al.
Publicado: (2021) -
Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network
por: Jendeberg, Johan, et al.
Publicado: (2020) -
Right ventricular ejection fraction measurements using two-dimensional transthoracic echocardiography by applying an ellipsoid model
por: Jorstig, Stina, et al.
Publicado: (2017) -
Single-energy CT predicts uric acid stones with accuracy comparable to dual-energy CT—prospective validation of a quantitative method
por: Jendeberg, Johan, et al.
Publicado: (2021) -
Air Pollution and Percent Emphysema Identified by Computed Tomography in the Multi-Ethnic Study of Atherosclerosis
por: Adar, Sara D., et al.
Publicado: (2014)