Cargando…
Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels
A majority of experimental disciplines face the challenge of exploring large and high-dimensional parameter spaces in search of new scientific discoveries. Materials science is no exception; the wide variety of synthesis, processing, and environmental conditions that influence material properties gi...
Autores principales: | Noack, Marcus M., Doerk, Gregory S., Li, Ruipeng, Streit, Jason K., Vaia, Richard A., Yager, Kevin G., Fukuto, Masafumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573639/ https://www.ncbi.nlm.nih.gov/pubmed/33077759 http://dx.doi.org/10.1038/s41598-020-74394-1 |
Ejemplares similares
-
Advances in Kriging-Based Autonomous X-Ray Scattering Experiments
por: Noack, Marcus M., et al.
Publicado: (2020) -
Autonomous discovery of emergent morphologies in directed self-assembly of block copolymer blends
por: Doerk, Gregory S., et al.
Publicado: (2023) -
A Kriging-Based Approach to Autonomous Experimentation with Applications to X-Ray Scattering
por: Noack, Marcus M., et al.
Publicado: (2019) -
Anisotropic Gaussian kernel adaptive filtering by Lie-group dictionary learning
por: Wada, Tomoya, et al.
Publicado: (2020) -
Inhomogeneous non-Gaussianity
por: Byrnes, Christian T., et al.
Publicado: (2011)