Cargando…
Permutation inference for canonical correlation analysis
Canonical correlation analysis (CCA) has become a key tool for population neuroimaging, allowing investigation of associations between many imaging and non-imaging measurements. As age, sex and other variables are often a source of variability not of direct interest, previous work has used CCA on re...
Autores principales: | Winkler, Anderson M., Renaud, Olivier, Smith, Stephen M., Nichols, Thomas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573815/ https://www.ncbi.nlm.nih.gov/pubmed/32603857 http://dx.doi.org/10.1016/j.neuroimage.2020.117065 |
Ejemplares similares
-
Faster permutation inference in brain imaging
por: Winkler, Anderson M., et al.
Publicado: (2016) -
Permutation inference for the general linear model
por: Winkler, Anderson M., et al.
Publicado: (2014) -
Multi-level block permutation
por: Winkler, Anderson M., et al.
Publicado: (2015) -
Accelerated estimation and permutation inference for ACE modeling
por: Chen, Xu, et al.
Publicado: (2019) -
Non‐parametric combination and related permutation tests for neuroimaging
por: Winkler, Anderson M., et al.
Publicado: (2016)