Cargando…
Application of deep learning and image processing analysis of photographs for amblyopia screening
PURPOSE: Photo screeners and autorefractors have been used to screen children for amblyopia risk factors (ARF) but are limited by cost and efficacy. We looked for a deep learning and image processing analysis-based system to screen for ARF. METHODS: An android smartphone was used to capture images u...
Autores principales: | Murali, Kaushik, Krishna, Viswesh, Krishna, Vrishab, Kumari, B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574096/ https://www.ncbi.nlm.nih.gov/pubmed/32587177 http://dx.doi.org/10.4103/ijo.IJO_1399_19 |
Ejemplares similares
-
Effectiveness of Kanna photoscreener in detecting amblyopia risk factors
por: Murali, Kaushik, et al.
Publicado: (2021) -
Binocular therapy as primary intervention in adults with anisometropic amblyopia
por: Murali, Kaushik, et al.
Publicado: (2021) -
A Deep Learning Framework for Earlier Prediction of Diabetic Retinopathy from Fundus Photographs
por: Gunasekaran, K., et al.
Publicado: (2022) -
Is Noncycloplegic Photorefraction Applicable for Screening Refractive Amblyopia Risk Factors?
por: Rajavi, Zhale, et al.
Publicado: (2012) -
Deep learning for image processing applications
por: Hemanth, D J, et al.
Publicado: (2017)