Cargando…
Automated identification of the mouse brain’s spatial compartments from in situ sequencing data
BACKGROUND: Neuroanatomical compartments of the mouse brain are identified and outlined mainly based on manual annotations of samples using features related to tissue and cellular morphology, taking advantage of publicly available reference atlases. However, this task is challenging since sliced tis...
Autores principales: | Partel, Gabriele, Hilscher, Markus M., Milli, Giorgia, Solorzano, Leslie, Klemm, Anna H., Nilsson, Mats, Wählby, Carolina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574211/ https://www.ncbi.nlm.nih.gov/pubmed/33076915 http://dx.doi.org/10.1186/s12915-020-00874-5 |
Ejemplares similares
-
TissUUmaps: interactive visualization of large-scale spatial gene expression and tissue morphology data
por: Solorzano, Leslie, et al.
Publicado: (2020) -
Spage2vec: Unsupervised representation of localized spatial gene expression signatures
por: Partel, Gabriele, et al.
Publicado: (2020) -
De novo spatiotemporal modelling of cell-type signatures in the developmental human heart using graph convolutional neural networks
por: Marco Salas, Sergio, et al.
Publicado: (2022) -
Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue
por: Gyllborg, Daniel, et al.
Publicado: (2020) -
Correction to ‘Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue’
por: Gyllborg, Daniel, et al.
Publicado: (2021)