Cargando…
Estimation of Covid-19 prevalence from serology tests: A partial identification approach
We propose a partial identification method for estimating disease prevalence from serology studies. Our data are results from antibody tests in some population sample, where the test parameters, such as the true/false positive rates, are unknown. Our method scans the entire parameter space, and reje...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/ https://www.ncbi.nlm.nih.gov/pubmed/33100477 http://dx.doi.org/10.1016/j.jeconom.2020.10.005 |
_version_ | 1783597689649233920 |
---|---|
author | Toulis, Panos |
author_facet | Toulis, Panos |
author_sort | Toulis, Panos |
collection | PubMed |
description | We propose a partial identification method for estimating disease prevalence from serology studies. Our data are results from antibody tests in some population sample, where the test parameters, such as the true/false positive rates, are unknown. Our method scans the entire parameter space, and rejects parameter values using the joint data density as the test statistic. The proposed method is conservative for marginal inference, in general, but its key advantage over more standard approaches is that it is valid in finite samples even when the underlying model is not point identified. Moreover, our method requires only independence of serology test results, and does not rely on asymptotic arguments, normality assumptions, or other approximations. We use recent Covid-19 serology studies in the US, and show that the parameter confidence set is generally wide, and cannot support definite conclusions. Specifically, recent serology studies from California suggest a prevalence anywhere in the range 0%-2% (at the time of study), and are therefore inconclusive. However, this range could be narrowed down to 0.7%–1.5% if the actual false positive rate of the antibody test was indeed near its empirical estimate ([Formula: see text] 0.5%). In another study from New York state, Covid-19 prevalence is confidently estimated in the range 13%–17% in mid-April of 2020, which also suggests significant geographic variation in Covid-19 exposure across the US. Combining all datasets yields a 5%–8% prevalence range. Our results overall suggest that serology testing on a massive scale can give crucial information for future policy design, even when such tests are imperfect and their parameters unknown. |
format | Online Article Text |
id | pubmed-7574757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75747572020-10-21 Estimation of Covid-19 prevalence from serology tests: A partial identification approach Toulis, Panos J Econom Article We propose a partial identification method for estimating disease prevalence from serology studies. Our data are results from antibody tests in some population sample, where the test parameters, such as the true/false positive rates, are unknown. Our method scans the entire parameter space, and rejects parameter values using the joint data density as the test statistic. The proposed method is conservative for marginal inference, in general, but its key advantage over more standard approaches is that it is valid in finite samples even when the underlying model is not point identified. Moreover, our method requires only independence of serology test results, and does not rely on asymptotic arguments, normality assumptions, or other approximations. We use recent Covid-19 serology studies in the US, and show that the parameter confidence set is generally wide, and cannot support definite conclusions. Specifically, recent serology studies from California suggest a prevalence anywhere in the range 0%-2% (at the time of study), and are therefore inconclusive. However, this range could be narrowed down to 0.7%–1.5% if the actual false positive rate of the antibody test was indeed near its empirical estimate ([Formula: see text] 0.5%). In another study from New York state, Covid-19 prevalence is confidently estimated in the range 13%–17% in mid-April of 2020, which also suggests significant geographic variation in Covid-19 exposure across the US. Combining all datasets yields a 5%–8% prevalence range. Our results overall suggest that serology testing on a massive scale can give crucial information for future policy design, even when such tests are imperfect and their parameters unknown. Elsevier B.V. 2021-01 2020-10-20 /pmc/articles/PMC7574757/ /pubmed/33100477 http://dx.doi.org/10.1016/j.jeconom.2020.10.005 Text en © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Toulis, Panos Estimation of Covid-19 prevalence from serology tests: A partial identification approach |
title | Estimation of Covid-19 prevalence from serology tests: A partial identification approach |
title_full | Estimation of Covid-19 prevalence from serology tests: A partial identification approach |
title_fullStr | Estimation of Covid-19 prevalence from serology tests: A partial identification approach |
title_full_unstemmed | Estimation of Covid-19 prevalence from serology tests: A partial identification approach |
title_short | Estimation of Covid-19 prevalence from serology tests: A partial identification approach |
title_sort | estimation of covid-19 prevalence from serology tests: a partial identification approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/ https://www.ncbi.nlm.nih.gov/pubmed/33100477 http://dx.doi.org/10.1016/j.jeconom.2020.10.005 |
work_keys_str_mv | AT toulispanos estimationofcovid19prevalencefromserologytestsapartialidentificationapproach |