Cargando…
Supervised Machine Learning Applied to Automate Flash and Prolonged Capillary Refill Detection by Pulse Oximetry
OBJECTIVE: Develop an automated approach to detect flash (<1.0 s) or prolonged (>2.0 s) capillary refill time (CRT) that correlates with clinician judgment by applying several supervised machine learning (ML) techniques to pulse oximeter plethysmography data. MATERIALS AND METHODS: Data was co...
Autores principales: | Hunter, Ryan Brandon, Jiang, Shen, Nishisaki, Akira, Nickel, Amanda J., Napolitano, Natalie, Shinozaki, Koichiro, Li, Timmy, Saeki, Kota, Becker, Lance B., Nadkarni, Vinay M., Masino, Aaron J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574820/ https://www.ncbi.nlm.nih.gov/pubmed/33117190 http://dx.doi.org/10.3389/fphys.2020.564589 |
Ejemplares similares
-
Comparison of point-of-care peripheral perfusion assessment using pulse oximetry sensor with manual capillary refill time: clinical pilot study in the emergency department
por: Shinozaki, Koichiro, et al.
Publicado: (2019) -
Does training level affect the accuracy of visual assessment of capillary refill time?
por: Shinozaki, Koichiro, et al.
Publicado: (2019) -
Optimal pressing strength and time for capillary refilling time
por: Kawaguchi, Rui, et al.
Publicado: (2019) -
Feedback function for capillary refilling time measurement device
por: Shinozaki, Masayoshi, et al.
Publicado: (2019) -
Pulse oximetry-based capillary refilling evaluation predicts postoperative outcomes in liver transplantation: a prospective observational cohort study
por: Yamamoto, Miyuki, et al.
Publicado: (2020)