Cargando…
Converting networks to predictive logic models from perturbation signalling data with CellNOpt
SUMMARY: The molecular changes induced by perturbations such as drugs and ligands are highly informative of the intracellular wiring. Our capacity to generate large datasets is increasing steadily. A useful way to extract mechanistic insight from the data is by integrating them with a prior knowledg...
Autores principales: | Gjerga, Enio, Trairatphisan, Panuwat, Gabor, Attila, Koch, Hermann, Chevalier, Celine, Ceccarelli, Franceco, Dugourd, Aurelien, Mitsos, Alexander, Saez-Rodriguez, Julio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575044/ https://www.ncbi.nlm.nih.gov/pubmed/32516357 http://dx.doi.org/10.1093/bioinformatics/btaa561 |
Ejemplares similares
-
From expression footprints to causal pathways: contextualizing large signaling networks with CARNIVAL
por: Liu, Anika, et al.
Publicado: (2019) -
CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms
por: Terfve, Camille, et al.
Publicado: (2012) -
FALCON: a toolbox for the fast contextualization of logical networks
por: De Landtsheer, Sébastien, et al.
Publicado: (2017) -
FUNKI: interactive functional footprint-based analysis of omics data
por: Hernansaiz-Ballesteros, Rosa, et al.
Publicado: (2022) -
Elucidating essential kinases of endothelin signalling by logic modelling of phosphoproteomics data
por: Schäfer, Alexander, et al.
Publicado: (2019)