Cargando…

On the use of growth models to understand epidemic outbreaks with application to COVID-19 data

The initial phase dynamics of an epidemic without containment measures is commonly well modelled using exponential growth models. However, in the presence of containment measures, the exponential model becomes less appropriate. Under the implementation of an isolation measure for detected infectives...

Descripción completa

Detalles Bibliográficos
Autores principales: Tovissodé, Chénangnon Frédéric, Lokonon, Bruno Enagnon, Glèlè Kakaï, Romain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575103/
https://www.ncbi.nlm.nih.gov/pubmed/33079964
http://dx.doi.org/10.1371/journal.pone.0240578
Descripción
Sumario:The initial phase dynamics of an epidemic without containment measures is commonly well modelled using exponential growth models. However, in the presence of containment measures, the exponential model becomes less appropriate. Under the implementation of an isolation measure for detected infectives, we propose to model epidemic dynamics by fitting a flexible growth model curve to reported positive cases, and to infer the overall epidemic dynamics by introducing information on the detection/testing effort and recovery and death rates. The resulting modelling approach is close to the Susceptible-Infectious-Quarantined-Recovered model framework. We focused on predicting the peaks (time and size) in positive cases, active cases and new infections. We applied the approach to data from the COVID-19 outbreak in Italy. Fits on limited data before the observed peaks illustrate the ability of the flexible growth model to approach the estimates from the whole data.