Cargando…
Biomarkers or factors for predicting the efficacy and adverse effects of immune checkpoint inhibitors in lung cancer: achievements and prospective
Immune checkpoint inhibitors (ICIs) are widely used in lung cancer therapy due to their effectiveness and minimal side effects. However, only a few lung cancer patients benefit from ICI therapy, driving the need to develop alternative biomarkers. Programmed death-ligand 1 (PD-L1) molecules expressed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575173/ https://www.ncbi.nlm.nih.gov/pubmed/32960841 http://dx.doi.org/10.1097/CM9.0000000000001090 |
Sumario: | Immune checkpoint inhibitors (ICIs) are widely used in lung cancer therapy due to their effectiveness and minimal side effects. However, only a few lung cancer patients benefit from ICI therapy, driving the need to develop alternative biomarkers. Programmed death-ligand 1 (PD-L1) molecules expressed in tumor cells and immune cells play a key role in the immune checkpoint pathway. Therefore, PD-L1 expression is a prognostic biomarker in evaluating the effectiveness of programmed death-1 (PD-1)/PD-L1 inhibitors. Nevertheless, adverse predictive outcomes suggest that other factors are implicated in the response. In this review, we present a detailed introduction of existing biomarkers concerning tumor abnormality and host immunity. PD-L1 expression, tumor mutation burden, neoantigens, specific gene mutations, circulating tumor DNA, human leukocyte antigen class I, tumor microenvironment, peripheral inflammatory cells, and microbiome are discussed in detail. To sum up, this review provides information on the current application and future prospects of ICI biomarkers. |
---|