Cargando…
Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
An efficient deep learning method is presented for distinguishing microstructures of a low carbon steel. There have been numerous endeavors to reproduce the human capability of perceptually classifying different textures using machine learning methods, but this is still very challenging owing to the...
Autores principales: | Kim, Hoheok, Inoue, Junya, Kasuya, Tadashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575545/ https://www.ncbi.nlm.nih.gov/pubmed/33082434 http://dx.doi.org/10.1038/s41598-020-74935-8 |
Ejemplares similares
-
Author Correction: Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
por: Kim, Hoheok, et al.
Publicado: (2021) -
Identification of microstructures critically affecting material properties using machine learning framework based on metallurgists’ thinking process
por: Noguchi, Satoshi, et al.
Publicado: (2022) -
Metallurgy for the non-metallurgist
por: Chandler, Harry
Publicado: (1998) -
Solid state physics for metallurgists
por: Weiss, Richard J, et al.
Publicado: (2013) -
Casting Processes from the Standpoint of the Metallurgist
por: Wilkinson, Mearle W.
Publicado: (1922)