Cargando…
Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow
In the current study, Artificial Intelligence (AI) approach was used for the learning of a physical system. We applied four inputs and one output in the learning process of AI. In the learning process, the inputs are space locations of a BCR (bubble column reactor), which are x, y, and z coordinate...
Autores principales: | Babanezhad, Meisam, Taghvaie Nakhjiri, Ali, Rezakazemi, Mashallah, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575550/ https://www.ncbi.nlm.nih.gov/pubmed/33082441 http://dx.doi.org/10.1038/s41598-020-74858-4 |
Ejemplares similares
-
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
por: Pelalak, Rasool, et al.
Publicado: (2021) -
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Prediction of turbulence eddy dissipation of water flow in a heated metal foam tube
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
High-performance hybrid modeling chemical reactors using differential evolution based fuzzy inference system
por: Babanezhad, Meisam, et al.
Publicado: (2020)