Cargando…

Differential effects of pollution on adult and recruits of a canopy-forming alga: implications for population viability under low pollutant levels

Marine macroalgal forests are highly productive and iconic ecosystems, which are seriously threatened by number of factors such as habitat destruction, overgrazing, ocean warming, and pollution. The effect of chronic, but low levels of pollutants on the long-term survival of the canopy-forming algae...

Descripción completa

Detalles Bibliográficos
Autores principales: de Caralt, Sònia, Verdura, Jana, Vergés, Alba, Ballesteros, Enric, Cebrian, Emma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575554/
https://www.ncbi.nlm.nih.gov/pubmed/33082390
http://dx.doi.org/10.1038/s41598-020-73990-5
Descripción
Sumario:Marine macroalgal forests are highly productive and iconic ecosystems, which are seriously threatened by number of factors such as habitat destruction, overgrazing, ocean warming, and pollution. The effect of chronic, but low levels of pollutants on the long-term survival of the canopy-forming algae is not well understood. Here we test the effects of low concentrations (found in good quality water-bodies) of nitrates, heavy metals copper (Cu) and lead (Pb), and herbicides (glyphosate) on both adults and recruits of Carpodesmia crinita, a Mediterranean canopy forming macroalga. We show that although adult biomass, height and photosynthetic yield remain almost unaffected in all the assays, low Cu levels of 30 µg/L completely suppress adult fertility. In addition, all the assays have a strong and negative impact on the survival and growth of recruits; in particular, glyphosate concentrations above 1 µg/L almost totally inhibit their survival. These results suggest that the long-term viability of C. crinita may be severely compromised by low pollutant levels that are not affecting adult specimens. Our results provide important data for a better understanding of the present-day threats to marine canopy-forming macroalgae and for the design of future management actions aimed at preserving macroalgal forests.