Cargando…

Directed self-assembly software for single cell deposition

Laser direct-write (LDW) bioprinting methods offer a diverse set of tools to design experiments, fabricate tissue constructs and to cellular microenvironments all in a CAD/CAM manner. To date, we have just scratched the surface of the system’s potential and for LDW to be utilized to its fullest, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sklare, Samuel C., Richey, Winona L., Vinson, Benjamin T., Chrisey, Douglas B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Whioce Publishing Pte. Ltd. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575622/
https://www.ncbi.nlm.nih.gov/pubmed/33094190
http://dx.doi.org/10.18063/IJB.2017.02.006
Descripción
Sumario:Laser direct-write (LDW) bioprinting methods offer a diverse set of tools to design experiments, fabricate tissue constructs and to cellular microenvironments all in a CAD/CAM manner. To date, we have just scratched the surface of the system’s potential and for LDW to be utilized to its fullest, there are many distinct hardware and software components that must be integrated and communicate seamlessly. In this perspective article, we detail the development of novel graphical user interface (GUI) software to improve LDW capability and functionality. The main modules in the control software correspond to cell transfer, microbead fabrication, and micromachining. The modules make the control of each of these features, and the management of printing programs that utilize one or more features, to be facile. The software also addresses problems related to construct scale-up, print speed, experimental conditions, and management of sensor data. The control software and possibilities for integrated sensor data are presented.