Cargando…
Deep metabolome: Applications of deep learning in metabolomics
In the past few years, deep learning has been successfully applied to various omics data. However, the applications of deep learning in metabolomics are still relatively low compared to others omics. Currently, data pre-processing using convolutional neural network architecture appears to benefit th...
Autores principales: | Pomyen, Yotsawat, Wanichthanarak, Kwanjeera, Poungsombat, Patcha, Fahrmann, Johannes, Grapov, Dmitry, Khoomrung, Sakda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575644/ https://www.ncbi.nlm.nih.gov/pubmed/33133423 http://dx.doi.org/10.1016/j.csbj.2020.09.033 |
Ejemplares similares
-
Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine
por: Grapov, Dmitry, et al.
Publicado: (2018) -
Genomic, Proteomic, and Metabolomic Data Integration Strategies
por: Wanichthanarak, Kwanjeera, et al.
Publicado: (2015) -
Accounting for biological variation with linear mixed-effects modelling improves the quality of clinical metabolomics data
por: Wanichthanarak, Kwanjeera, et al.
Publicado: (2019) -
CRISP: a deep learning architecture for GC × GC–TOFMS contour ROI identification, simulation and analysis in imaging metabolomics
por: Mathema, Vivek Bhakta, et al.
Publicado: (2022) -
Metabolomics and Integrative Omics for the Development of Thai Traditional Medicine
por: Khoomrung, Sakda, et al.
Publicado: (2017)