Cargando…

Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters

Significance: The optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue’s optical properties using a model...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jiarui, Chen, Ichun Anderson, Chang, Shuaibin, Tang, Jianbo, Lee, Blaire, Kılıç, Kıvılcım, Sunil, Smrithi, Wang, Hui, Varadarajan, Divya, Magnain, Caroline, Chen, Shih-Chi, Costantini, Irene, Pavone, Francesco, Fischl, Bruce, Boas, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575831/
https://www.ncbi.nlm.nih.gov/pubmed/33094126
http://dx.doi.org/10.1117/1.NPh.7.4.045005
_version_ 1783597886176493568
author Yang, Jiarui
Chen, Ichun Anderson
Chang, Shuaibin
Tang, Jianbo
Lee, Blaire
Kılıç, Kıvılcım
Sunil, Smrithi
Wang, Hui
Varadarajan, Divya
Magnain, Caroline
Chen, Shih-Chi
Costantini, Irene
Pavone, Francesco
Fischl, Bruce
Boas, David A.
author_facet Yang, Jiarui
Chen, Ichun Anderson
Chang, Shuaibin
Tang, Jianbo
Lee, Blaire
Kılıç, Kıvılcım
Sunil, Smrithi
Wang, Hui
Varadarajan, Divya
Magnain, Caroline
Chen, Shih-Chi
Costantini, Irene
Pavone, Francesco
Fischl, Bruce
Boas, David A.
author_sort Yang, Jiarui
collection PubMed
description Significance: The optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue’s optical properties using a model that combines the exponential decay due to tissue scattering and the axial point spread function that arises from the confocal nature of the detection system, particularly for higher numerical aperture (NA) measurements. A weakness in estimating the optical properties is the inter-parameter cross-talk between tissue scattering and the confocal parameters defined by the Rayleigh range and the focus depth. Aim: In this study, we develop a systematic method to improve the characterization of optical properties with high-NA OCT. Approach: We developed a method that spatially parameterizes the confocal parameters in a previously established model for estimating the optical properties from the depth profiles of high-NA OCT. Results: The proposed parametrization model was first evaluated on a set of intralipid phantoms and then validated using a low-NA objective in which cross-talk from the confocal parameters is negligible. We then utilize our spatially parameterized model to characterize optical property changes introduced by a tissue index matching process using a simple immersion agent, 2,2’-thiodiethonal. Conclusions: Our approach improves the confidence of parameter estimation by reducing the degrees of freedom in the non-linear fitting model.
format Online
Article
Text
id pubmed-7575831
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Society of Photo-Optical Instrumentation Engineers
record_format MEDLINE/PubMed
spelling pubmed-75758312020-10-21 Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters Yang, Jiarui Chen, Ichun Anderson Chang, Shuaibin Tang, Jianbo Lee, Blaire Kılıç, Kıvılcım Sunil, Smrithi Wang, Hui Varadarajan, Divya Magnain, Caroline Chen, Shih-Chi Costantini, Irene Pavone, Francesco Fischl, Bruce Boas, David A. Neurophotonics Research Papers Significance: The optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue’s optical properties using a model that combines the exponential decay due to tissue scattering and the axial point spread function that arises from the confocal nature of the detection system, particularly for higher numerical aperture (NA) measurements. A weakness in estimating the optical properties is the inter-parameter cross-talk between tissue scattering and the confocal parameters defined by the Rayleigh range and the focus depth. Aim: In this study, we develop a systematic method to improve the characterization of optical properties with high-NA OCT. Approach: We developed a method that spatially parameterizes the confocal parameters in a previously established model for estimating the optical properties from the depth profiles of high-NA OCT. Results: The proposed parametrization model was first evaluated on a set of intralipid phantoms and then validated using a low-NA objective in which cross-talk from the confocal parameters is negligible. We then utilize our spatially parameterized model to characterize optical property changes introduced by a tissue index matching process using a simple immersion agent, 2,2’-thiodiethonal. Conclusions: Our approach improves the confidence of parameter estimation by reducing the degrees of freedom in the non-linear fitting model. Society of Photo-Optical Instrumentation Engineers 2020-10-21 2020-10 /pmc/articles/PMC7575831/ /pubmed/33094126 http://dx.doi.org/10.1117/1.NPh.7.4.045005 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/ Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
spellingShingle Research Papers
Yang, Jiarui
Chen, Ichun Anderson
Chang, Shuaibin
Tang, Jianbo
Lee, Blaire
Kılıç, Kıvılcım
Sunil, Smrithi
Wang, Hui
Varadarajan, Divya
Magnain, Caroline
Chen, Shih-Chi
Costantini, Irene
Pavone, Francesco
Fischl, Bruce
Boas, David A.
Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters
title Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters
title_full Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters
title_fullStr Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters
title_full_unstemmed Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters
title_short Improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters
title_sort improving the characterization of ex vivo human brain optical properties using high numerical aperture optical coherence tomography by spatially constraining the confocal parameters
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575831/
https://www.ncbi.nlm.nih.gov/pubmed/33094126
http://dx.doi.org/10.1117/1.NPh.7.4.045005
work_keys_str_mv AT yangjiarui improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT chenichunanderson improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT changshuaibin improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT tangjianbo improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT leeblaire improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT kılıckıvılcım improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT sunilsmrithi improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT wanghui improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT varadarajandivya improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT magnaincaroline improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT chenshihchi improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT costantiniirene improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT pavonefrancesco improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT fischlbruce improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters
AT boasdavida improvingthecharacterizationofexvivohumanbrainopticalpropertiesusinghighnumericalapertureopticalcoherencetomographybyspatiallyconstrainingtheconfocalparameters