Cargando…
Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs
To demonstrate the identification of corneal diseases using a novel deep learning algorithm. A novel hierarchical deep learning network, which is composed of a family of multi-task multi-label learning classifiers representing different levels of eye diseases derived from a predefined hierarchical e...
Autores principales: | Gu, Hao, Guo, Youwen, Gu, Lei, Wei, Anji, Xie, Shirong, Ye, Zhengqiang, Xu, Jianjiang, Zhou, Xingtao, Lu, Yi, Liu, Xiaoqing, Hong, Jiaxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576153/ https://www.ncbi.nlm.nih.gov/pubmed/33082530 http://dx.doi.org/10.1038/s41598-020-75027-3 |
Ejemplares similares
-
Ocular Signs in Slit-Lamp Microscopy
Publicado: (1949) -
Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs
por: Hung, Kuo-Hsuan, et al.
Publicado: (2022) -
The fundus slit lamp
por: Gellrich, Marcus-Matthias
Publicado: (2015) -
Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs: Model Development and Validation Study
por: Son, Ki Young, et al.
Publicado: (2022) -
Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras
por: Fang, Xiaoling, et al.
Publicado: (2022)