Cargando…
Robust EEG-Based Decoding of Auditory Attention With High-RMS-Level Speech Segments in Noisy Conditions
The attended speech stream can be detected robustly, even in adverse auditory scenarios with auditory attentional modulation, and can be decoded using electroencephalographic (EEG) data. Speech segmentation based on the relative root-mean-square (RMS) intensity can be used to estimate segmental cont...
Autores principales: | Wang, Lei, Wu, Ed X., Chen, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576187/ https://www.ncbi.nlm.nih.gov/pubmed/33132874 http://dx.doi.org/10.3389/fnhum.2020.557534 |
Ejemplares similares
-
A Speech-Level–Based Segmented Model to Decode the Dynamic Auditory Attention States in the Competing Speaker Scenes
por: Wang, Lei, et al.
Publicado: (2022) -
Ear-EEG Measures of Auditory Attention to Continuous Speech
por: Holtze, Björn, et al.
Publicado: (2022) -
Decoding Covert Speech From EEG-A Comprehensive Review
por: Panachakel, Jerrin Thomas, et al.
Publicado: (2021) -
Multisensory benefits for speech recognition in noisy environments
por: Oh, Yonghee, et al.
Publicado: (2022) -
Meta-Learning for Decoding Neural Activity Data With Noisy Labels
por: Xu, Dongfang, et al.
Publicado: (2022)